Helge Holz: Painting by Numbers (Draft) At the IPv6-working-group of the Ministry of Interior in Germany I was responsible for an IPv6 address concept for the state of Schleswig-Holstein, which should be used as a template by the other states for their concepts. But how do you explain address-concepts? If you talk to technical people, who are writing address-concepts themselves, they are won't listen, because they are bored. If you talk to management they won't listen, because they don't understand. So I try to "draw a picture", where you can "see" hierarchical addressing. The main idea is to draw a square representing the given address-space, where each sub-square contains the aggregatable addresses. Since the given prefix and the host part are irrelevant they won't show in the picture. In some slides I will do the construction of such a square ending with the following: It's best seen in IPv4: Suppose the following square is representing 172.16.0.0/16 Visualisation-Matrix of aggregatable IPv4-address-ranges (8 Bit) | | | | | | 988 | | | | | 8 | _ | | | | | |--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---|--------------------------|--------------------------|---| | 0 | 1 | 4 | 5 | 16 | 17 | 20 | 21 | 64 | 65 | 68 | 69 | 80 | 81 | 84 | 85 | | 2 | 3 | 6 | 7 | 18 | 19 | 22 | 23 | 66 | 67 | 70 | 71 | 82 | 83 | 86 | 87 | | 8 | 9 | 12 | 13 | 24 | 25 | 28 | 29 | 72 | 73 | 76 | 77 | 88 | 89 | 92 | 93 | | 10 | 11 | 14 | 15 | 26 | 27 | 30 | 31 | 74 | 75 | 78 | 79 | 90 | 91 | 94 | 95 | | 32 | 33 | 36 | 37 | 48 | 49 | 52 | 53 | 96 | 97 | 100 | 101 | 112 | 113 | 116 | 117 | | 34 | 35 | 38 | 39 | 50 | 51 | 54 | 55 | 98 | 99 | 102 | 103 | 114 | 115 | 118 | 119 | | 40 | 41 | 44 | 45 | 56 | 57 | 60 | 61 | 104 | 105 | 108 | 109 | 120 | 121 | 124 | 125 | | 42 | 43 | 46 | 47 | 58 | 59 | 62 | 63 | 106 | 107 | 110 | 111 | 122 | 123 | 126 | 127 | | | | | | | | | | | | | | | | | | | 128 | 129 | 132 | 133 | 144 | 145 | 148 | 149 | 192 | 193 | 196 | 197 | 208 | 209 | 212 | 213 | | 128
130 | 129
131 | 132
134 | 133
135 | 144
146 | 145
147 | 148
150 | 149
151 | 192
194 | 193
195 | 196
198 | 197
199 | 208
210 | 209
211 | 212
214 | 213
215 | | | | | | | | | | | | | | | | | | | 130 | 131 | 134 | 135 | 146 | 147 | 150 | 151 | 194 | 195 | 198 | 199 | 210 | 211 | 214 | 215 | | 130
136 | 131
137 | 134
140 | 135
141 | 146
152 | 147
153 | 150
156 | 151
157 | 194
200 | 195
201 | 198
204 | 199
205 | 210
216 | 211 | 214
220 | 215 | | 130
136
138 | 131
137
139 | 134
140
142 | 135
141
143 | 146
152
154 | 147
153
155 | 150
156
158 | 151
157
159 | 194
200
202 | 195
201
203 | 198
204
206 | 199
205
208 | 210216218 | 211
217
219 | 214
220
222 | 215
221
223 | | 130
136
138
160 | 131
137
139
161 | 134
140
142
164 | 135
141
143
165 | 146
152
154
176 | 147
153
155
177 | 150
156
158
180 | 151
157
159
181 | 194
200
202
224 | 195
201
203
225 | 198
204
206
228 | 199
205
208
229 | 210216218240 | 211
217
219
241 | 214
220
222
244 | 215221223245 | Pick any sub-square of any size and you'll find the network address in the upper left corner and the broadcast address in the lower right corner: The red square shows the network 172.16.128.0/20 (128 in the upper left corner) Translating this to hex shows the same for IPv6: Visualization-Matrix of aggregatable IPv6-address-ranges (8 Bit) | | | | | | 88 | 8 | | | | | 8 | | | | | |----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|----------------------|----------------|----------------------|----------------------| | 00 | 01 | 04 | 05 | 10 | 11 | 14 | 15 | 40 | 41 | 44 | 45 | 50 | 51 | 54 | 55 | | 02 | 03 | 06 | 07 | 12 | 13 | 16 | 17 | 42 | 43 | 46 | 47 | 52 | 53 | 56 | 57 | | 08 | 09 | 0C | 0D | 18 | 19 | 1C | 1D | 48 | 49 | 4C | 4D | 58 | 59 | 5C | 5D | | 0A | OB | 0E | OF | 1A | 1B | 1E | 1F | 4A | 4B | 4E | 4F | 5A | 5B | 5E | 5F | | 20 | 21 | 24 | 25 | 30 | 31 | 34 | 35 | 60 | 61 | 64 | 65 | 70 | 71 | 74 | 75 | | 22 | 23 | 26 | 27 | 32 | 33 | 36 | 37 | 62 | 63 | 66 | 67 | 72 | 73 | 76 | 77 | | 28 | 29 | 2C | 2D | 38 | 39 | 3C | 3D | 68 | 69 | 6C | 6D | 78 | 79 | 7C | 7D | | 2A | 2B | 2E | 2F | 3A | 3B | 3E | 3F | 6A | 6B | 6E | 6F | 7A | 7B | 7E | 7F | | | | | | | | | | | | | | | | | | | 80 | 81 | 84 | 85 | 90 | 91 | 94 | 95 | CO | C1 | C4 | C5 | D0 | D1 | D4 | D5 | | 80 | 81 | 84
86 | 85
87 | 90
92 | 91
93 | 94
96 | 95
97 | C0
C2 | C1
C3 | C4
C6 | C5
C7 | D0
D2 | D1
D3 | D4
D6 | D5
D7 | | | | | | | | | | | | | | | | | | | 82 | 83 | 86 | 87 | 92 | 93 | 96 | 97 | C2 | С3 | C6 | C 7 | D2 | D3 | D6 | D7 | | 82
88 | 83
89 | 86
8C | 87
8D | 92
98 | 93
99 | 96
9C | 97
9D | C2
C8 | C3
C9 | C6
CC | C7
CD | D2
D8 | D3
D9 | D6
DC | D7
DD | | 82
88
8A | 83
89
8B | 86
8C
8E | 87
8D
8F | 92
98
9A | 93
99
9B | 96
9C
9E | 97
9D
9F | C2
C8
CA | C3
C9
CB | C6
CC
CE | C7
CD
CF | D2
D8
DA | D3
D9
DB | D6
DC
DE | D7
DD
DF | | 82
88
8A
A0 | 83
89
8B
A1 | 86
8C
8E
A4 | 87
8D
8F
A5 | 92
98
9A
B0 | 93
99
9B
B1 | 96
9C
9E
B4 | 97
9D
9F
B5 | C2
C8
CA | C3
C9
CB | C6
CC
CE | C7
CD
CF | D2
D8
DA
F0 | D3 D9 DB F1 | D6
DC
DE
F4 | D7
DD
DF
F5 | This is the main slide of my presentation. By this I will explain hierarchical addressing just by colouring squares (Painting by Numbers). In the second part I will use a program (written by my colleague Helmut Schimkowski) how you can very fast create a hierarchical address concept just by repeatedly colouring squares. (You don't need a program, but it helps). You still have to know what you want to aggregate but not how: this is done by the "Painting by Numbers"-method.